148 research outputs found

    Strain Stiffening Induced by Molecular Motors in Active Crosslinked Biopolymer Networks

    Full text link
    We have studied the elastic response of actin networks with both compliant and rigid crosslinks by modeling molecular motors as force dipoles. Our finite element simulations show that for compliant crosslinkers such as filamin A, the network can be stiffened by two orders of magnitude while stiffening achieved with incompliant linkers such as scruin is significantly smaller, typically a factor of two, in excellent agreement with recent experiments. We show that the differences arise from the fact that the motors are able to stretch the compliant crosslinks to the fullest possible extent, which in turn causes to the deformation of the filaments. With increasing applied strain, the filaments further deform leading to a stiffened elastic response. When the crosslinks are incompliant, the contractile forces due to motors do not alter the network morphology in a significant manner and hence only small stiffening is observed.Comment: 4 pages, 5 figure

    Effect of doping on polarization profiles and switching in semiconducting ferroelectric thin films

    Get PDF
    This paper proposes a theory to describe the polarization and switching behavior of ferroelectrics that are also wide-gap semiconductors. The salient feature of our theory is that it does not make any a priori assumption about either the space charge distribution or the polarization profile. The theory is used to study a metal-ferroelectric-metal capacitor configuration, where the ferroelectric is n-type doped. The main result of our work is a phase diagram as a function of doping level and thickness that shows different phases, namely, films with polarization profiles that resemble that of undoped classical ferroelectrics, paraelectric, and a new head-to-tail domain structure. We have identified a critical doping level, which depends on the energy barrier in the Landau energy and the built-in potential, which is decided by the electronic structures of both the film and the electrodes. When the doping level is below this critical value, the behavior of the films is almost classical. We see a depleted region, which extends through the film when the film thickness is very small, but is confined to two boundary layers near the electrodes for large film thickness. When the doping level is higher than the critical value, the behavior is classical for only very thin films. Thicker films at this doping level are forced into a tail-to-tail configuration with three depletion layers, lose their ferroelectricity, and may thus be described as nonlinear dielectric or paraelectric. For films which are doped below the critical level, we show that the field required for switching starts out at the classical coercive field for very thin films, but gradually decreases

    Depletion Layers and Domain Walls in Semiconducting Ferroelectric Thin Films

    Get PDF
    Commonly used ferroelectric perovskites are also wide-band-gap semiconductors. In such materials, the polarization and the space-charge distribution are intimately coupled, and this Letter studies them simultaneously with no a priori ansatz on either. In particular, we study the structure of domain walls and the depletion layers that form at the metal-ferroelectric interfaces. We find the coupling between polarization and space charges leads to the formation of charge double layers at the 90° domain walls, which, like the depletion layers, are also decorated by defects like oxygen vacancies. In contrast, the 180° domain walls do not interact with the defects or space charges. Implications of these results to domain switching and fatigue in ferroelectric devices are discussed

    Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations

    Get PDF
    Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations.Comment: Accepted for publication in the Biophysical Journa

    H2-dependent attachment kinetics and shape evolution in chemical vapor deposition graphene growth

    Get PDF
    Experiments on graphene growth through chemical vapor deposition (CVD) involving methane (CH4) and hydrogen (H2) gases reveal a complex shape evolution and a nonmonotonic dependence on the partial pressure of H2 (pH2). To explain these intriguing observations, we develop a microkinetic model for the stepwise decomposition of CH4 into mobile radicals and consider two possible mechanisms of attachment to graphene crystals: CH radicals to hydrogen-decorated edges of the crystals and C radicals to bare crystal edges. We derive an effective mass flux and an effective kinetic coefficient, both of which depend on pH2, and incorporate these into a phase field model. The model reproduces both the non-monotonic dependence on pH2 and the characteristic shapes of graphene crystals observed in experiments. At small pH2, growth is limited by the kinetics of attachment while at large pH2 growth is limited because the effective mass flux is small. We also derive a simple analytical model that captures the non-monotone behavior, enables the two mechanisms of attachment to be distinguished and provides guidelines for CVD growth of defect-free 2D crystals

    First-principles calculations of step formation energies and step interactions on TiN(001)

    Full text link
    We study the formation energies and repulsive interactions of monatomic steps on the TiN(001) surface, using density functional total-energy calculations. The calculated formation energy of [100] oriented steps agree well with recently reported experimental values; these steps are shown to have a rumpled structure, with the Ti atoms undergoing larger displacements than the N atoms. For steps that are parallel to [110], our calculations predict a nitrogen (N) termination, as the corresponding formation energy is several hundred meV/\AA \ smaller than that of Ti-terminated steps
    corecore